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Abstract. This paper describes a comparative performance study of MPI and 
Remote Memory Access (RMA) communication models in context of four sci-
entific benchmarks: NAS MG, NAS CG, SUMMA matrix multiplication, and 
Lennard Jones molecular dynamics on clusters with the Myrinet network. It is 
shown that RMA communication delivers a consistent performance advantage 
over MPI. In some cases an improvement as much as 50% was achieved.  
Benefits of using non-blocking RMA for overlapping computation and commu-
nication are discussed. 

1 Introduction 

In the last decade message passing has become the predominant programming model 
for scientific applications. The current paper attempts to answer the question to what 
degree performance of well tuned application benchmarks coded in MPI can be im-
proved by using another related programming model, remote memory access (RMA) 
communication. In the past RMA programming model was popular on the Cray 
T3D/E system where it was offered through the Cray SHMEM library [1]. The global 
address space architecture of these two Cray systems supported RMA communication 
very well. In fact, several of the current MPP systems only now can compete with la-
tency and bandwidth of the RMA operations on the Cray T3E. In this comparative 
study, we are focusing on commodity Linux clusters with Myrinet. We chose this 
platform not because of its merits in supporting RMA but because of its popularity. In 
fact, Myrinet offers good support for message passing but rather limited support for 
RMA communication-- only the put operation has a native implementation in hard-
ware. However, the next version of the Myricom GM programming interface will 
support get operation.  

We use several popular scientific benchmarks and applications such as NAS CG 
and MG, SUMMA matrix multiplication, and Lennard Jones molecular dynamics to 
evaluate the effectiveness of RMA communication. In each case, two versions of the 
benchmark were derived: one based on blocking and the other non-blocking commu-
nication. The goal was to determine what additional performance benefit non-



 
 
 

 
 
 
 

 

blocking RMA can offer in each individual benchmark. This paper demonstrates even 
on a network with limited support for RMA, this communication paradigm can offer 
consistent performance advantages over message passing. These results are quite en-
couraging especially since the network vendors are offering increasing level of sup-
port for RMA communication and the expectation that the MPI-2 1-sided implemen-
tations will eventually become more widespread (not yet offered by Myricom in their 
MPICH-GM library). Note that in this paper, we are not trying to evaluate the rather 
complex model of the MPI-2 one-sided operations or investigate its potential for high-
performance implementation [2] on modern networks such as Myrinet. Instead, by us-
ing ARMCI, a low-level high-performance portable RMA library with simple pro-
gress model, published implementation approach and performance results for Myrinet 
[3,4], we study what benefits the RMA communication can offer in general. In addi-
tion, ARMCI could be used in MPI codes as a high-performance alternative interface 
to the MPI-2 one-sided operations. 

This paper is organized as follows. Section 2 describes RMA communication and 
the Myrinet network. Section 3 describes the benchmarks used in the study and gives 
a synopsis of how they were converted to use RMA. Section 4 presents experimental 
results. Section 5 summarizes related work and the paper is concluded in Section 6. 

2 Remote Memory Access Communication on Myrinet 

Remote memory access operations offer support for an intermediate programming 
model between message passing and shared memory. This model combines some ad-
vantages of shared memory, such as direct access to shared/global data, and the mes-
sage-passing model, namely the control over locality and data distribution. RMA is 
sometimes considered a form of message passing; however, an important difference 
over the MPI-1 message-passing model is that RMA does not require an explicit re-
ceive operation and thus offers increased asynchrony of data transfers. The availabil-
ity of non-blocking RMA operations presents additional opportunities for overlapping 
data transfers and computations. Although prefetching and poststoring instructions are 
often supported by the shared memory hardware and are exploited by compilers to 
overlap computations with data movement, a scientific programmer on shared mem-
ory systems typically faces difficulties when attempting to manage explicitly overlap-
ping of computations and communication due to the lack of precise APIs. Such ex-
plicit non-blocking APIs are present in the most RMA interfaces.  

We have been developing a portable RMA interface called ARMCI [5]. It is a 
rather low-level interface primarily intended as a run-time system for other program-
ming models [21] such as Global Arrays [6], Co-Array Fortran [7] or UPC [8] com-
pilers, or portable SHMEM library [9]. However, we also use it as the RMA commu-
nication layer for the benchmarks studied in this work. For Fortran codes, appropriate 
wrappers were added to access the needed functionality. 

In the last few years, Myrinet has become a primary network for building medium 
and large-scale clusters based on commodity processing nodes due to its good scal-
ability and relatively moderate cost. GM is a low-level message-passing system for 
the Myrinet network [10]. The GM system includes a driver, the Myrinet-interface 



 
 

control program, a network mapping program, and the GM API, library, and header 
files. GM features include 1) concurrent, protected, user-level access to the Myrinet 
interface; 2) reliable, ordered delivery of messages; 3) automatic mapping and route 
computation; 4) automatic recovery from transient network problems; 5) scalability to 
thousands of nodes; and 6) low host-CPU utilization. GM has certain limitations in-
cluding the inability to send messages from or receive messages into non-DMA-able 
memory, and offers no support for gather or scatter operations. Moreover, memory 
registration operations in GM under Linux are quite expensive relative to other sys-
tems [3]. 

The implementation issues of an extensive set of RMA interfaces on Myrinet clus-
ters like those offered by ARMCI have been described before [3,4]. As Myrinet GM 
1.x offers only support for the put operation, other RMA operations, such as get, are 
implemented using a client-server approach and the GM put operation. Recently 
ARMCI has been expanded to support non-blocking RMA operations. Their imple-
mentations extend the original client-server architecture in a manner that reduces the 
host CPU involvement in the communication. This is important for applications that 
attempt to overlap communication with computation.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

3 Application of RMA Communication in Scientific Benchmarks 

To evaluate the benefits of RMA communication, we used multiple benchmarks rep-
resenting a diverse set of algorithms used in scientific computing: conjugate gradient 
(CG) and multigrid (MG) kernel benchmarks from the NAS suite, SUMMA matrix 
multiplication, and a molecular dynamics application.  

3.1 NAS Parallel Benchmarks 

The NAS parallel benchmarks are a set of programs designed as a part of the NASA 
Numerical Aerodynamic Simulation (NAS) program originally to evaluate supercom-
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puters. They mimic the computation and data movement characteristics of large-scale 
computations. NAS parallel benchmark suite consists of five kernels (EP, MG, FT, 
CG, IS) and three pseudo applications (LU, SP, BT) programs. Our starting point was 
NPB 2.3 [11] implementation written in MPI and distributed by NASA. We modified 
two of the five NAS kernels, MultiGrid (MG) and Conjugate Gradient (CG), to re-
place point-to-point blocking and non-blocking message-passing communication calls 
with first blocking and then non-blocking RMA communication. This is just a mere 
replacement of the point-to-point message passing communications part of the current 
message passing version of CG and MG NAS kernels using ARMCI RMA blocking 
and non-blocking operations. Other benchmarks (e.g., FFT, IS) rely on collective 
communication, thus limiting the appropriateness of RMA (point-to-point) communi-
cation with out reformulating the underlying mathematical algorithms. In our view, 
RMA is an alternative model to point-to-point message passing and a complementary 
model to collective operations. This view was shared by the authors of the Cray 
SHMEM library that offered both RMA and collective operations [1]. 

MG Benchmark 
The NAS-MG multigrid benchmark solves Poisson's equation in 3D using a multigrid 
V-cycle. The multigrid benchmark carries out computation at a series of levels and 
each level of the V-cycle defines a grid at a successively coarser resolution. This im-
plementation of MG from NAS is said to approximate the performance a typical user 
can expect for a portable parallel program on a distributed memory computer [11].  

Most of the work in MG is done in four functions. Each of these functions is im-
plemented using one or more 27-point stencils. “resid” is a function that computes the 
residual and operates at the same level of hierarchy. “psinv” is the smoother and also 
operates on the same levels of hierarchy. “interp” interpolates and “rpj3” projects be-
tween adjacent levels of hierarchy. The NPB 2.3 code uses a three-step dimensional 
exchange algorithm to satisfy boundary conditions. This is implemented with point-
to-point message passing communication.  In addition to this, point-to-point commu-
nication is used in the parallel implementation of these stencils to update every proc-
essors boundary values for each dimension that is distributed.   

Our primary modification involved replacing these point-to-point communications 
with ARMCI RMA operations. For our implementation using ARMCI blocking op-
erations, point-to-point communication was effectively replaced with the 
ARMCI_Put_notify operation. This blocking function call transfers the data to the 
destination processor memory and updates an internal (to the library) notify flag in 
the destination process memory. At the destination, arrival of this message can be 
(optionally) verified by making a call to ARMCI_Notify_wait that accesses the value 
of the notify flag. For our implementation using the corresponding non-blocking API, 
we attempt to achieve overlap by issuing non-blocking update in the next dimension 
before actually working on the data in the current dimension. This required us to use 
an additional set of buffers. Any explicit acknowledgement indicating the buffer 
availability is avoided by taking advantage of the periodic nature of the algorithm and 
alternating between these two sets of buffers.  



 
 

CG Benchmark 
In NAS CG benchmark, a conjugate gradient method is used to compute an approxi-
mation to the smallest eigenvalue of a large, sparse, symmetric positive definite ma-
trix. This kernel benchmark tests irregular long distance communications and em-
ploys sparse matrix vector multiplication. The CG benchmark involves multiple 
iterations of a solution to the system of linear equations, Az=x, using the conjugate 
gradient method. It computes the residual norm at the end of each of these iterations. 
After each iteration, the eigenvalue is estimated with a shift λ. The size of the system, 
number of iterations involved and shift applied to the eigenvalue estimate is deter-
mined as a part of the initial setup of each class of the problem and is shown below. 

 

Table 1. Problem sizes in the CG benchmark. 
CLASS N Iterations NonZeroes λ 
A 14000 15 11 20 
B 75000 75 13 60  
C 150000 75 15 110 

 
Each of the CG iterations involves the following steps: 
   for i=1 to 25 { 
     q = A.p       (A matrix vector product) 
     α = ρ/(pT q)  (dot product of result of the above  
                    product and transpose of p) 
     z  = z + α p 
     ρ0 = ρ 
     r = r – α q 
      …. 
   } 
   Computation of the residual norm ||r|| 

Of the above, the steps that involve most of the communication are: matrix vector 
multiplication, vector dot product and computation of the residual norm. The compu-
tation of the matrix vector product involves a recursive doubling based pairwise ex-
change. This is implemented in the original algorithm using point-to-point communi-
cation. Since the recursive doubling based pairwise exchange is a barrier in itself, it is 
expected that replacing them with RMA operations would not give much benefit. 
Even the computation of the residual norm, which is a recursive reduction based 
pairwise exchange, synchronizes all the processes. Hence replacing the point-to-point 
communication with RMA blocking operations offers limited room for improvement. 
However using non-blocking RMA operations, we can overlap data exchange with 
sum of partial sub-matrices. This is done by overlapping communication and compu-
tation with in each exchange and between different exchanges by dividing the data 
into two parts and overlapping a communication operation involved in the exchange 
of one part of the data with the sum of partial sub-matrix vector product on the second 
part. 



 
 
 

 
 
 
 

 

3.2 SUMMA – Matrix Multiplication 

SUMMA is a highly efficient, scalable implementation of common matrix multiplica-
tion algorithm proposed by van de Geijn and Watts [12].  The MPI version is the 
SUMMA code developed by its authors, which is modified to use a more efficient 
matrix multiplication dgemm routines from BLAS rather than equivalent C code dis-

tributed with SUMMA. We implemented two other SUMMA variants to use blocking 
and non-blocking RMA. The matrix is decomposed into sub-matrices and distributed 
among processors with a 2D block distribution. Each sub-matrix is divided into 
chunks. Overlapping is achieved by issuing a call to get a chunk of data while com-
puting the previously received chunk, see Figure 2. The minimum chunk size was 128 
for all runs, which was determined empirically and the maximum chunk size was de-
termined dynamically, depending on memory availability and the number of proces-
sors. 

3.3 Molecular Dynamics of Lennard-Jones System 

Parallel molecular dynamics of a Lennard-Jones system is a benchmark problem that 
has been extensively used by various researchers [13-15]. Molecular dynamics (MD) 
is a computer simulation technique where the time evolution of a set of interacting at-
oms is followed by integrating their equations of motion. The force between two at-
oms is approximated by Lennard-Jones potential energy function U(r), where r is the 
distance between two atoms. Using Newton’s laws of equation and Velocity-Verlet 
algorithm, the velocities and coordinates of the atoms are updated for the next time 
step. The physics of the molecular dynamics problem is described in [13].  
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where, σ and ε are constants. The N atoms are simulated in a 3-D parallelepiped with 
periodic boundary conditions at the Lennard-Jones state point defined by the reduced 
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Fig 2. Using two sets of buffers to overlap communication and computation in 
matrix multiplication 



 
 

density ρ = 0.8442 and reduced temperature T = 0.72 [13]. The simulation is begun 
with the atoms on an fcc lattice with random velocities and with a time step of 0.004 
in reduced units. For simplicity reasons, there are no neighbor lists or cutoff limits.  

There are three main classes of parallelization for classical molecular dynamics: 
atom, force and spatial decomposition. In this paper, a parallel algorithm based on 
force decomposition is tested on a standard Lennard-Jones benchmark for problem 
size ranging from 256 – 100,000 atoms. There are three variants of the problem: mes-
sage-passing, one-sided blocking and one-sided non-blocking RMA. The RMA ver-
sions were implemented using Global Arrays that manages distributed arrays and 
ARMCI for all communication. Force decomposition is based on a block decomposi-
tion of the force matrix F distributed among processors, where each processor com-
putes a fixed subset of inter-atomic forces. The entire force matrix (N x N) is divided 
into multiple blocks (m x m), where m is the block size and N is the total number of 
atoms. Each process owns N/P atoms, where P is the total number of processors. 
Newton’s third law is exploited as it halves the amount of computation.  

In the MPI implementation, the force matrix owned by each processor Pz is of size 
)/()/( PNPN × . As these elements are computed they will be accumulated into 

the corresponding force sub-vectors and finally folded together to get the total forces 
on its N/P atoms [13]. In the RMA implementation of Lennard-Jones, the force matrix 
and atom coordinates are stored in a global array. A centralized task list is maintained 
which stores the information of the next block that needs to be computed. The issue of 
load imbalance is a serious concern for force decomposition MD algorithm. Proces-
sors will have equal work only if the force matrix distribution is regular and equally 
sparse. In order to address load imbalance, a simple and effective dynamic load bal-
ancing technique called fixed-size chunking is used [16]. Initially, all the processes 
get a block from the task list. Whenever a process finishes computing its block, it gets 
the next available block from the task list. Overlapping of computation and communi-
cation is achieved by issuing a get call to the next available block in the task list, 
while computing a block. 

Experimental Results 

The experiments were performed on the 2.4GHz Pentium-4 Linux cluster with Myri-
net-2000 at the State University of New York at Buffalo. It employs the most recent 
versions of GM and MPICH-GM libraries provided by Myricom.  

We ran our MG tests for class A (problem size: 256X256X256, iterations: 4), B 
(problem size: 256X256X256, iterations: 20) and C (problem size: 512X512X512, it-
erations: 20). They are three production grade problem sizes for the MG benchmark. 

For Class A, a smaller problem size with fewest iterations, ARMCI blocking code 
outperforms the reference MPI implementation by 7 to 30%. ARMCI non-blocking 
version achieves an additional overlap of 10 to 23% over the ARMCI blocking im-
plementation and 28 to 46% improvement over the reference MPI implementation. 
Most of the overlap achieved over the blocking implementation is just by mere issue 
of the update in the next dimension while working on the current one. For Class B, 
with the same problem size as class A but more iterations, ARMCI blocking imple-



 
 
 

 
 
 
 

 

mentation outperforms MPI by 10 to 37%, see Figure 3 (left). ARMCI non-blocking 
implementation achieves an additional overlap of 5 to 20% over the blocking version 
and shows a 30 to 45% improvement over the reference MPI implementation. For 
Class C, ARMCI blocking implementation outperforms MPI by 10 to 32%. ARMCI 
non-blocking implementation achieves an additional overlap of 2 to 21% over the 
blocking implementation and shows a 30 to 40% improvement over MPI. Since 
coarser levels of multi-grid do not carry enough work to hide all the communication, 
an improvement achieved by using non-blocking over blocking API is limited for 
small processor configurations. With the increase of the number of processors for the 
problem size, the improvement is amplified. 

 
Due to the synchronous nature of data transfers in the CG algorithm, the perform-

ance improvement over MPI, although consistent is rather limited, see Figure 4. As 
expected the main source of performance improvement is due to increased efficiency 
of RMA operations over the message passing (e.g., due to overheads associated with 
tag-matching, early message arrival etc that MPI must do). However, the non-
blocking RMA offers an additional performance improvement. For example, for 128 
processors it exceeds 10% over MPI. 
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Experiments with matrix multiplication were run by varying the matrix size and 
the number of processors, with one and two processes per node. The results show that 
the RMA-based matrix multiplication consistently outperforms its message-passing 
counterpart by 10-25%. For a matrix size of 1024, as the number of processors in-
creases, the amount of local computation is less and hence lesser overlap. On the 
other hand, for a large matrix size (e.g. 2048), initially the computation cost is very 
high when compared to the communication cost. As the number of processors in-
creases the impact of communication cost comes into picture. The graphs in Figure 5 
indicate that using RMA communication in SUMMA resulted in improved applica-
tion performance over message passing. This performance benefit is mainly due to the 
efficiency of the communication layer (in this case, ARMCI), which reduced the data 
transfer cost when compared to message passing. However, for a very large problem 
size, the effect of overlapping computation is not perceived due to very high computa-
tion cost. 

The experimental results of the molecular dynamics benchmark indicate that using 
RMA resulted in improved application performance over message passing, see Figure 
6. This benchmark problem scales well when the number of processors and/or the 
problem size is increased, thus proving the solution is cost-optimal. In some cases, the 
performance improvement over MPI is greater than 40%. However, improvement in 
using non-blocking over blocking is not significant here as the potential for overlap-
ping is limited in this benchmark problem. 

5 Related Work 

There have been multiple studies comparing effectiveness of different program-
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Fig. 6: Performance improvement in the molecular dynamics simulation in-
volving 12000 (left) and 65536 (right) atoms. 
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ming models to MPI [17-20]. For example, paper [18] studies MPI, SHMEM and 
shared memory in the context of adaptive applications dynamic remeshing and the n-
body problem, all on a shared-memory machine. Another related paper [19] is com-
paring different parallel languages to MPI in the context of NAS MG parallel bench-
mark. In both of these studies, MPI was hard to outperform. Despite important merits 
of the other models (ease of use, reduced implementation complexity) none of them 
showed a consistent performance advantage over MPI across all the discussed 
benchmarks. In [20] several benchmarks were used to compare performance of the 
KeLP C++ run-time library to MPI. By exploiting SMP locality and non-blocking 
communication in the KeLP data mover to overlap communication with computations 
performance, improvement from 12 to 28% was measured on a DEC cluster. 

6 Conclusions 

This paper compared performance of MPI and RMA implementations of four scien-
tific benchmarks: NAS MG, NAS CG, SUMMA matrix multiplication, and Lennard 
Jones molecular dynamics on clusters with the Myrinet network. Both blocking and 
non-blocking RMA versions of the benchmarks were studied. In all these bench-
marks, RMA delivered a consistent performance advantage over MPI. In some cases 
an improvement as much as 50% was achieved. In parts of the algorithms where over-
lapping communication with computations is possible, non-blocking RMA provided 
an additional performance boost. The overall performance advantage of RMA over 
the send/receive model can be contributed to the fact that this approach can avoid the 
overheads associated with typical implementations of MPI such as management of 
message queues, tag matching, and dealing with early arrival of messages. In addi-
tion, since explicit cooperation with the remote data owner is not needed for the data 
transfer to complete, RMA offers a more asynchronous programming model than 
MPI. However, this approach usually requires a careful program design to assure that 
the remote data is in consistent state when it is being accessed by the RMA calls.  
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